Matter & Interactions II, Week 12

We’re hanging out in chapter 19 looking at the properties of capacitors in circuits.

In response to my (chemist) department chair’s accusation that I’m not rigorous enough in my teaching of “the scientific method” as it’s practiced in chemistry, I just had “the talk” about “THE” scientific method with the class and about how it doesn’t exist. I will never forget Dave McComas (IBEX) telling the audience at an invited session I organized at AAPT in Ontario (CA) that we MUST stop presenting “the scientific method” as it is too frequently presented in the textbooks because it simply does not reflect how science works. No one hypothesizes a scientific discovery. Once a prediction is made and experimentally (or observationally in the case of astronomy) verified, that’s not a prediction because the outcome is expected. Even if the prediction isn’t verified, one of the required known possible outcomes is that the prediction is wrong. There’s nothing surprising here. True discoveries happen when we find something we had no reason to expect to be there in the first place. The Higgs boson? Not a discovery, because it was predicted forty years or so ago and we only recently had the technology to test for its presence. I don’t think anyone honestly expected it to not be found, but I think many theoretical particle physicists (not so) secretly hoped it wouldn’t be found because then we would have actually learned something new (namely that the standard model has problems).

The “scientific method” simply doesn’t exist as a finite numbered sequence of steps whose ordering is the same from discipline to discipline. Textbooks need to stop presenting that way. Scientific methodology is more akin to a carousel upon which astronomers, chemists, physicists, geologists, or biologists (and all the others I didn’t specify) jump at different places. Observational astronomers simply don’t begin by “forming an hypothesis” as too many overly simplistic sources may indicate. Practitioners in different disciplines begin the scientific process at different places by the very nature of their disciplines and I don’t think there’s a way to overcome that.

Rather than a rote sequence of steps, scientific methodology should focus on validity through testability and falsifiability. I know there are some people who think that falsifiability has problems, and I acknowledge them. However, within the context of introductory science courses, testability and falsifiability together form a more accurate framework for how science actually works. This is the approach I have been taking for over a decade in my introductory astronomy course. It is not within my purview to decide what is and is not appropriate for other disciplines, like chemistry. My chemist colleagues can present scientific methodology as they see fit. I ask for the same respect in doing so within my disciplines (physics and astronomy).

I now consider “the scientific method” to have been adequately “covered” in my calculus-based physics course.

Feedback welcome as always.